14,746 research outputs found

    Element gain drifts as an imaging dynamic range limitation in PAF-based interferometers

    Full text link
    Interferometry with phased-array feeds (PAFs) presents new calibration challenges in comparison with single-pixel feeds. In particular, temporal instability of the compound beam patterns due to element gain drifts (EGDs) can produce calibration artefacts in interferometric images. To translate imaging dynamic range requirements into PAF hardware and calibration requirements, we must learn to relate EGD levels to imaging artefact levels. We present a MeqTrees-based simulations framework that addresses this problem, and apply it to the APERTIF prototype currently in development for the WSRT.Comment: 4 pages, 3 figures, poster presentation at the XXX URSI General Assembly and Scientific Symposium (Istanbul, Turkey, August 13-20, 2011

    Revisiting the radio interferometer measurement equation. IV. A generalized tensor formalism

    Full text link
    The radio interferometer measurement equation (RIME), especially in its 2x2 form, has provided a comprehensive matrix-based formalism for describing classical radio interferometry and polarimetry, as shown in the previous three papers of this series. However, recent practical and theoretical developments, such as phased array feeds (PAFs), aperture arrays (AAs) and wide-field polarimetry, are exposing limitations of the formalism. This paper aims to develop a more general formalism that can be used to both clearly define the limitations of the matrix RIME, and to describe observational scenarios that lie outside these limitations. Some assumptions underlying the matrix RIME are explicated and analysed in detail. To this purpose, an array correlation matrix (ACM) formalism is explored. This proves of limited use; it is shown that matrix algebra is simply not a sufficiently flexible tool for the job. To overcome these limitations, a more general formalism based on tensors and the Einstein notation is proposed and explored both theoretically, and with a view to practical implementations. The tensor formalism elegantly yields generalized RIMEs describing beamforming, mutual coupling, and wide-field polarimetry in one equation. It is shown that under the explicated assumptions, tensor equations reduce to the 2x2 RIME. From a practical point of view, some methods for implementing tensor equations in an optimal way are proposed and analysed. The tensor RIME is a powerful means of describing observational scenarios not amenable to the matrix RIME. Even in cases where the latter remains applicable, the tensor formalism can be a valuable tool for understanding the limits of such applicability.Comment: 16 pages, no figures, accepted by A&

    Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism

    Full text link
    Since its formulation by Hamaker et al., the radio interferometer measurement equation (RIME) has provided a rigorous mathematical basis for the development of novel calibration methods and techniques, including various approaches to the problem of direction-dependent effects (DDEs). This series of papers aims to place recent developments in the treatment of DDEs into one RIME-based mathematical framework, and to demonstrate the ease with which the various effects can be described and understood. It also aims to show the benefits of a RIME-based approach to calibration. Paper I re-derives the RIME from first principles, extends the formalism to the full-sky case, and incorporates DDEs. Paper II then uses the formalism to describe self-calibration, both with a full RIME, and with the approximate equations of older software packages, and shows how this is affected by DDEs. It also gives an overview of real-life DDEs and proposed methods of dealing with them. Applying this to WSRT data (Paper III) results in a noise-limited image of the field around 3C 147 with a very high dynamic range (1.6 million), and none of the off-axis artifacts that plague regular selfcal. The resulting differential gain solutions contain significant information on DDEs, and can be used for iterative improvements of sky models. Perhaps most importantly, sources as faint as 2 mJy have been shown to yield meaningful differential gain solutions, and thus can be used as potential calibration beacons in other DDE-related schemes.Comment: 12 pages, no figures, published in A&

    Form factors of the XXZ model and the affine quantum group symmetry

    Full text link
    We present new expressions of form factors of the XXZ model which satisfy Smirnov's three axioms. These new form factors are obtained by acting the affine quantum group Uq(sl2^)U_q (\hat{\frak s \frak l_2}) to the known ones obtained in our previous works. We also find the relations among all the new and known form factors, i.e., all other form factors can be expressed as kind of descendents of a special one.Comment: 11 pages, latex; Some explanation is adde

    The potential of the ground state of NaRb

    Full text link
    The X1Σ+^{1}\Sigma ^{+} state of NaRb was studied by Fourier transform spectroscopy. An accurate potential energy curve was derived from more than 8800 transitions in isotopomers 23^{23}Na85^{85}Rb and 23^{23}Na87^{87}Rb. This potential reproduces the experimental observations within their uncertainties of 0.003 \rcm to 0.007 \rcm. The outer classical turning point of the last observed energy level (v=76v''=76, J=27J''=27) lies at 12.4\approx 12.4 \AA, leading to a energy of 4.5 \rcm below the ground state asymptote.Comment: 8 pages, 6 figures and 2 table

    Using baseline-dependent window functions for data compression and field-of-interest shaping in radio interferometry

    Full text link
    In radio interferometry, observed visibilities are intrinsically sampled at some interval in time and frequency. Modern interferometers are capable of producing data at very high time and frequency resolution; practical limits on storage and computation costs require that some form of data compression be imposed. The traditional form of compression is a simple averaging of the visibilities over coarser time and frequency bins. This has an undesired side effect: the resulting averaged visibilities "decorrelate", and do so differently depending on the baseline length and averaging interval. This translates into a non-trivial signature in the image domain known as "smearing", which manifests itself as an attenuation in amplitude towards off-centre sources. With the increasing fields of view and/or longer baselines employed in modern and future instruments, the trade-off between data rate and smearing becomes increasingly unfavourable. In this work we investigate alternative approaches to low-loss data compression. We show that averaging of the visibility data can be treated as a form of convolution by a boxcar-like window function, and that by employing alternative baseline-dependent window functions a more optimal interferometer smearing response may be induced. In particular, we show improved amplitude response over a chosen field of interest, and better attenuation of sources outside the field of interest. The main cost of this technique is a reduction in nominal sensitivity; we investigate the smearing vs. sensitivity trade-off, and show that in certain regimes a favourable compromise can be achieved. We show the application of this technique to simulated data from the Karl G. Jansky Very Large Array (VLA) and the European Very-long-baseline interferometry Network (EVN)

    Structure of Matrix Elements in Quantum Toda Chain

    Full text link
    We consider the quantum Toda chain using the method of separation of variables. We show that the matrix elements of operators in the model are written in terms of finite number of ``deformed Abelian integrals''. The properties of these integrals are discussed. We explain that these properties are necessary in order to provide the correct number of independent operators. The comparison with the classical theory is done.Comment: LaTeX, 17 page

    Storage and retrieval of light pulses in atomic media with "slow" and "fast" light

    Full text link
    We present experimental evidence that light storage, i.e. the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small group velocity media but can also occur in a negative group velocity medium. A simple physical picture applicable to both cases and previous light storage experiments is discussed.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Spin interfaces in the Ashkin-Teller model and SLE

    Full text link
    We investigate the scaling properties of the spin interfaces in the Ashkin-Teller model. These interfaces are a very simple instance of lattice curves coexisting with a fluctuating degree of freedom, which renders the analytical determination of their exponents very difficult. One of our main findings is the construction of boundary conditions which ensure that the interface still satisfies the Markov property in this case. Then, using a novel technique based on the transfer matrix, we compute numerically the left-passage probability, and our results confirm that the spin interface is described by an SLE in the scaling limit. Moreover, at a particular point of the critical line, we describe a mapping of Ashkin-Teller model onto an integrable 19-vertex model, which, in turn, relates to an integrable dilute Brauer model.Comment: 12 pages, 6 figure
    corecore